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Abstract

Three–dimensional (3D) similarity datum transformation is extensively applied to transform coordinates from GNSS-based datum to
a local coordinate system. Recently, some total least squares (TLS) algorithms have been successfully developed to solve the universal 3D
similarity transformation problem (probably with big rotation angles and an arbitrary scale ratio). However, their procedures of the
parameter estimation and new point (non-common point) transformation were implemented separately, and the statistical correlation
which often exists between the common and new points in the original coordinate system was not considered. In this contribution, a
generalized total least squares prediction (GTLSP) algorithm, which implements the parameter estimation and new point transformation
synthetically, is proposed. All of the random errors in the original and target coordinates, and their variance–covariance information will
be considered. The 3D transformation model in this case is abstracted as a kind of generalized errors–in–variables (EIV) model and the
equation for new point transformation is incorporated into the functional model as well. Then the iterative solution is derived based on
the Gauss–Newton approach of nonlinear least squares. The performance of GTLSP algorithm is verified in terms of a simulated exper-
iment, and the results show that GTLSP algorithm can improve the statistical accuracy of the transformed coordinates compared with
the existing TLS algorithms for 3D similarity transformation.
� 2016 COSPAR. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Nowadays, Global Navigation Satellite System (GNSS)
has been extensively applied in the fields of geodesy and
many other areas. The GNSS techniques are based on spec-
ified coordinate systems, such as WGS-84, ITRF 2008, and
CGCS 2000 etc. As a result, the coordinates of the points
obtained from GNSS observations are defined in these sys-
tems. However, many geodetic and surveying engineering
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applications are based on local coordinate systems. Thus
the coordinate transformation problem must be solved in
the GNSS applications.

Three–dimensional (3D) similarity datum transforma-
tion is the most commonly used model for geodetic trans-
formation and has attracted extensive attention. The
purpose of 3D transformation is to predict the coordinates
of new points in the target system by using their original
coordinates and the coordinates of common points in both
original and target coordinate systems. In order to achieve
this goal, two necessary procedures, including the parame-
ter estimation and new point transformation, should be
implemented in practice.
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Parameter estimation is an important part for the 3D
similarity transformation problem, in which there are
totally seven transformation parameters to be estimated,
including three translation parameters, three rotation
angles and a scale ratio. In geodetic field, many algorithms
have been developed to solve these parameters. If the rota-
tion angles are small enough and the scale ratio is close to
1, the transformation equation can be simplified into the
well-known Bursa model (Seeber, 1993, p. 2; Yang,
1999), which is normally processed as a linear Gauss–
Markov (GM) model. However, the rotation angles could
be large in practice, therefore many least squares
algorithms have been proposed to solve the nonlinear
GM model, such as the methods based on the Procrustes
analysis (Grafarend and Awange, 2003, 2012; Grafarend,
2006) and the unit quaternion (Shen et al., 2006).

It is well known that the random errors in the coefficient
matrix are not considered in the traditional GM model.
Nevertheless, the coordinates in the original system are
usually observed as well, which means that parts of the ele-
ments in the coefficient matrix are affected by random
errors. Thus the transformation model cannot always be
abstracted as a GM model. Then the errors–in–variables
(EIV) model should be introduced to replace the GM
model in the datum transformation problems. The method
to adjust EIV model was named total least squares (TLS)
and was firstly introduced by Golub and Van Loan
(1980) in the field of statistics. It is generally acknowledged
that Teunissen (1988) was the first person who formulated
and solved the TLS problem in an exact form in geodetic
literature. Since then a large number of algorithms, espe-
cially the weighted TLS (WTLS) algorithms which can
solve EIV models in heteroscedastic case were developed
(e.g., Schaffrin and Wieser, 2008; Neitzel, 2010; Shen
et al., 2011; Amiri-Simkooei and Jazaeri, 2012;
Mahboub, 2012; Xu et al., 2012; Fang, 2013; Zhou and
Fang, 2015). In addition, some extended TLS algorithms
were also investigated, for instance, the TLS algorithm
with equality (Schaffrin and Felus, 2009; Zhang and
Zhang, 2014; Fang, 2015; Fang and Wu, 2016; Fang
et al., 2015) and inequality constraints (Zhang et al.,
2013; Fang, 2014a; Fang and Wu, 2016; Zeng et al.,
2015), the TLS solution to multivariate EIV model
(Schaffrin and Felus, 2008), the gross error processing for
TLS (Amiri-Simkooei and Jazaeri, 2013; Wang et al.,
2016) and the variance component estimation method in
EIV models (Amiri-Simkooei, 2013; Xu and Liu, 2014;
Mahboub, 2014). Many of these algorithms can be
employed to estimate parameters in the 2D or 3D datum
transformation problem.

The TLS solution to 3D transformation under universal
conditions (probably with big rotation angles and an arbi-
trary scale ratio) has become a hot research issue in recent
years. Felus and Burtch (2009) derived an algorithm by
solving the multivariate EIV model. Fang (2014b) provided
a TLS solution by introducing the quasi indirect errors
adjustment (QIEA). Chang (2015) generated a closed-
form least squares solution to 3D similarity transformation
problem under Gauss–Helmert model in the equally
weighted case. Additionally, Fang (2015) proposed a
WTLS algorithm with universal constraints for fully
weighted 3D datum transformations.

Although a large amount of TLS algorithms for 3D
transformation have been proposed, a limitation exists
commonly: they only focused on how to estimate the trans-
formation parameters, whereas their procedures of the
parameter estimation and new point transformation were
implemented separately. The statistical correlation between
the common and new points in the original system, which
often exists in practice particularly when the coordinates
are obtained by GNSS observation networks, was ignored.
In order to overcome this limitation, Li et al. (2012) pro-
posed a seamless 3D datum transformation model which
integrated the processes of the parameter estimation and
new point transformation. The experimental results
showed that the accuracy of the transformed coordinates
can be improved especially when the correlation mentioned
above is strong. However, this transformation model was
derived based on the Bursa model which is simplified
under the conditions with small rotation angles and a scale
ratio close to 1, implying that it is inapplicable under the
conditions with big rotation angles and an arbitrary scale
ratio.

In this paper, we propose a generalized total least
squares prediction (GTLSP) algorithm for the universal
3D similarity transformation, in which the parameter cal-
culation and new point transformation can be implemented
synthetically. All of the random errors in the original and
target coordinates, and their variance–covariance informa-
tion are taken into account in this algorithm. The 3D trans-
formation model is described as a kind of generalized EIV
model. In addition, the equation for new point transforma-
tion is also included in the functional model. Then the
Gauss–Newton approach of nonlinear least squares is
employed to derive the iterative solution.

The remaining part of the article is organized as follows:
the background of 3D similarity transformation model is
introduced in Section 2. In Section 3, the abstract func-
tional model and the corresponding stochastic model are
presented, and then the iterative formulae of the GTLSP
algorithm are derived based on the Gauss–Newton
approach. In Section 4, we make a detailed discussion
about the application of this new algorithm for 3D similar-
ity transformation. A simulated experiment is presented to
verify the performance of GTLSP algorithms in Section 5.
Finally, some conclusions from theoretical and experimen-
tal aspects are given in Section 6.

2. Background of the 3D similarity transformation model

The 3D similarity transformation model is (Wolf and
Ghilani, 1997; Felus and Burtch, 2009):



B. Wang et al. / Advances in Space Research 59 (2017) 815–823 817
x2i
y2i
z2i

2
64

3
75�

ex2i
ey2i
ez2i

2
64

3
75 ¼ lM

x1i
y1i
z1i

2
64

3
75�

ex1i
ey1i
ez1i

2
64

3
75

0
B@

1
CAþ

Dx

Dy

Dz

2
64

3
75

ð1Þ
where ½ x1i y1i z1i �T and ½ x2i y2i z2i �T represent the
coordinates of the ith point in the original and target coor-

dinate systems, ½ ex1i ey1i ez1i �T and ½ ex2i ey2i ez2i �T
are their corresponding random error vectors, respectively.
M is the rotation matrix, and it is expressed as below:

M ¼ M3 �M2 �M1 ð2Þ

M1 ¼
1 0 0

0 cos a sin a

0 � sin a cos a
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2
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The parameter vector to be estimated is as following:

n ¼ ½Dx Dy Dz l a b c �T ð4Þ
which includes three translation parameters (Dx, Dy, Dz),
three rotation angles (a, b, c) and a scale ratio parameter (l).

By using the estimated transformation parameters, the
original coordinates of the new points can be converted
into the target coordinate system. Most previous studies
on TLS algorithms for 3D datum transformation only
focused on the parameter estimation. Meanwhile the proce-
dures of the parameter calculation and coordinates trans-
formation of new points were implemented separately. To
overcome this shortcoming, Li et al. (2012) proposed a
seamless 3D transformation model which integrated the
processes of parameter estimation and new point transfor-
mation. It can actually be regarded as a kind of TLS pre-
diction method. However, this model was derived based
on the Bursa model which is simplified under the condi-
tions with small rotation angles and a scale ratio close to
1. Thus it is inapplicable for more universal 3D transfor-
mation problems with large rotation angles and an arbi-
trary scale ratio. The GTLSP algorithm derived in next
section can effectively solve this problem.

3. Derivation of the GTLSP algorithm

For common points, the transformation model can be
abstracted as a kind of generalized EIV model:

L1 � eL1
¼ u1ðe1; nÞ ¼ f 1ða1 � e1; nÞ ð5Þ

where f 1 and u1 are both abstract vector functions with
dimensions m � 1, a1 and L1 denote the n � 1 and m � 1
observation vectors in original and target systems, e1 and
eL1
are their corresponding random error vectors, respec-

tively. n is the t � 1 parameter vector to be estimated.
For new points, the transformation equation is

expressed as below:

�L2 ¼ u2ðe2; nÞ ¼ f 2ða2 � e2; nÞ ð6Þ
where f 2 and u2 are abstract vector functions as well, and
both of their dimensions are p � 1. a2 represents the q � 1
observation vector in the original system, e2 is the corre-

sponding random error vector. �L2 denotes the p � 1 target
vector which needs to be predicted.

The corresponding stochastic model is:

e � Nð0; r2
0QeÞ ð7Þ

where

e ¼
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Qe is a positive definite cofactor matrix of the total error
vector e, without loss of generality, it is assumed as a fully
correlated matrix. QL1L1

, Qa1a1
and Qa2a2

are the cofactor

matrices of eL1
, e1 and e2, respectively. QL1a1

, QL1a2
and

Qa1a2
are the corresponding cofactor matrices between

eL1
, e1 and e2. The estimation criterion of the model above

is presented as following:

eTPe ¼ min ð9Þ
where P denotes the weight matrix, and P ¼ Q�1

e .
Since Eqs. (5) and (6) are essentially nonlinear models,

the Gauss–Newton approach of nonlinear least squares is
employed to derive the solution. We assume that the

approximate values of n, e1 and e2 are n
0, e01 and e02, respec-

tively. The right-hand members of Eqs. (5) and (6) are

expressed through Taylor series expansion at (n0; e01, e
0
2):

L1 � eL1
¼ u1ðe01; n0Þ þ A1dnþ B1ðe1 � e01Þ ð10Þ

�L2 ¼ u2ðe02; n0Þ þ A2dnþ B2ðe2 � e02Þ ð11Þ
where dn is the correction vector of n0, dn ¼ n� n0, and:

A1 ¼ @u1ðe1; nÞ
@nT

����ðe01; n0Þ; B1 ¼ @u1ðe1; nÞ
@eT1

����ðe01; n0Þ ð12Þ

A2 ¼ @u2ðe2; nÞ
@nT

����ðe02; n0Þ; B2 ¼ @u2ðe2; nÞ
@eT2

����ðe02; n0Þ ð13Þ

The Lagrange objective function of GTLSP is con-
structed as below:

U ¼ eTPeþ 2kTðL1 � eL1
� u1ðe01; n0Þ � A1dn

� B1ðe1 � e01ÞÞ þ 2KTð�L2 � u2ðe02; n0Þ � A2dn

� B2ðe2 � e02ÞÞ ð14Þ
where k and K are the m � 1 and p � 1 vectors of
‘‘Lagrange multipliers”, respectively. The solution of this
target function can be derived via the Euler–Lagrange nec-
essary conditions, namely,
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where ‘‘�” and ‘‘^” represent predicted and estimated ones,
respectively.

From Eqs. (15a) and (15e), we can readily obtain the
error vector:
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Thus, we can derive the expression for each residual vector

in the form of k̂ as below:
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By inserting Eqs. (17a) and (17b) into Eq. (15c), we

obtain the following equation:

L1 � ðQL1L1
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BT
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Then the expression of k̂ can be derived as:
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By substituting Eqs. (15e) and (19) into Eq. (15b), the solu-

tion of dn̂ can be derived as below:
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Thereby, the parameter vector is updated as:

n̂ ¼ n0 þ dn̂.
Inserting Eq. (22) into Eq. (19) then into Eqs. (17a)–(17c),

we obtain the specific expression for each error vector:
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Finally, from Eq. (15d), we can do the prediction step to

obtain ~L2 as:

~L2 ¼ u2ðe02; n0Þ þ A2dn̂þ B2ð~e2 � e02Þ ð24Þ
The above procedure can be implemented iteratively, and a
small positive threshold e0 should be primarily presented to

terminate the iteration until kdn̂k < e0, where k � k denotes
the l2–norm of a vector. It’s important to note that A1, B1,
A2, and B2 should be updated during the iterative process.

From Eqs. (17a)–(22), we find that the prediction equa-
tion has no effect on parameter estimation. Therefore, Eqs.
(23c) and (24) can be carried out after the iteration. If the
threshold e0 is sufficiently small to stop the iteration proce-

dure, i.e., kdn̂k < e0 ! 0, as a result, ~e2 � e02 ! 0, Eqs.
(23c) and (24) will become:
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In addition, Eq. (19) can be simplified as:
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From Eq. (16), we find that the sum of weighted squared
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As a consequence, the variance factor of the unit weight
is estimated as following:

r̂2
0 ¼

~eTP~e

r
¼ k̂TðL1 � u1ð~e1; n̂Þ þ B1~e1Þ

r
ð29Þ
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where the degree of freedom r is:

r ¼ ðmþ pÞ � ðt þ pÞ ¼ m� t ð30Þ
In Eq. (30), the total number of equations includes m

equations for common points and p equations for new
points. The total number of necessary unknowns includes
t parameters and p target values to be predicted.

The covariance matrix of the estimated parameters can
be obtained via linearly approximate variance propagation
law to Eq. (22) as:

Dn̂ ¼ r̂2
0ðAT

1Q
�1
l A1Þ�1 ð31Þ

Since GTLSP algorithm is derived based on the theory
of nonlinear least squares, the solution along with its pre-
cision assessment is biased, though the bias may be so small
in practice. This bias is related to the precision of the obser-
vations and the geometrical properties of the nonlinear
manifold (see Teunissen, 1984, 1985, 1990). To work out
the bias formulae, one can refer to the theory and methods
proposed by Box (1971), which has also been applied in the
partial EIV model (Xu et al., 2012) and constrained TLS
problem (Fang, 2015).

4. Application of the GTLSP algorithm for 3D similarity

transformation

In the application of this new algorithm for 3D similar-
ity transformation, related matrices (A1, B1, A2, B2) should
be specifically determined and updated during the iteration.

Assuming that there are k common points and l new
points in total. It is certain that the corresponding dimen-
sions mentioned in Section 3 are: m = n = 3k, p = q = 3l
and t = 7, respectively. For the ith common point,
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In Eq. (33),
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where I3 is a 3–order identity matrix. The subscripts ‘‘i” in
above equations indicate the ith point. The superscripts

‘‘0” represent substituting approximate values ðe01; n0Þ into
related expressions, and all of these values should be con-
tinuously updated during the iteration. In addition,
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Combining related expressions of each point together, we
can obtain:
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The initial values of e01 and n0 are given as: e01 ¼ 0,

n0 ¼ ½ 0 0 0 1 0 0 0 �T, respectively. In case the
approximate value of the scale ratio becomes non-
positive (i.e., l0 < 0) in the iterative procedure, it should
be reset to 1 so as to avoid convergence to the incorrect
solution.

The necessary matrices for new points (A2 and B2) can be
derived and updated in a similar way as described above.

In practice, the coordinates in the original system and
target system are usually statistically uncorrelated. In other
words, QL1a1

¼ 0, Qa2L1
¼ 0, thus the related formulae

become:

Ql ¼ QL1L1
þ B1Qa1a1

BT
1 ð40Þ

~eL1
¼ QL1L1

�Q�1
l ðL1 � u1ðe01; n0Þ � A1dn̂þ B1e

0
1Þ ð41aÞ

~e1 ¼ Qa1a1
BT

1 �Q�1
l ðL1 � u1ðe01; n0Þ � A1dn̂þ B1e

0
1Þ ð41bÞ

~e2 ¼ Qa2a1
BT

1 �Q�1
l ðL1 � u1ðe01; n0Þ � A1dn̂þ B1e

0
1Þ ð41cÞ
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If the coordinates of the common and new points in the
original system are independent (Qa2a1

¼ 0), the error vec-

tor ~e2 ¼ 0, which means that the coordinates of the new
points in the original system will not be corrected and the
results of GTLSP algorithm will be equivalent to those of
existing WTLS algorithms for the universal 3D similarity
transformation (see e.g., Felus and Burtch, 2009; Fang,
2014b; Fang, 2015).
5. Experiment analysis

Assuming that there are 18 points distributing in a space
domain. The true coordinates of each point in the original
coordinate system (system I) and target coordinate system
(system II) are known, and the corresponding transforma-
tion parameters from systems I to II are as below:
Dx ¼ 1000, Dy ¼ 1000, Dz ¼ 1000, l ¼ 2:0, a ¼ 1:0 rad,
b ¼ 1:5 rad, c ¼ 2:5 rad.

Eight of these points are designated as common points,
and the remaining ten points are specified as new points
(check points).

We assume that the coordinates of the common and
check points in system I are statistically correlated
(Qa2a1

– 0). Random errors with the given covariance

matrices are generated and added to the coordinates of
all points in system I and the common points in system
II. This simulation is repeated 10,000 times.

Assuming that the square root of the apriori variance
component r0 is 0.01. The following two computational
schemes are employed to implement the transformation
of check points from system I to system II.

(1) WTLS algorithm with universal constraints for the
3D similarity transformation (see Fang, 2015);

(2) Generalized Total least squares prediction (GTLSP)
algorithm proposed in this paper.

The coordinates of the check points in system II:

½ x̂i;II ŷi;II ẑi;II �T can be obtained by these two schemes.

By utilizing the known true coordinates ½ xi;II yi;II zi;II �T ,
we can calculate the root mean square errors (RMSEs)
for the x, y and z components of the transformed coordi-
nates as follows:
Table 1
Statistical results of coordinate transformation for Cases 1–4.

Case Scheme Ave (rx) Ave (ry) Ave (rz) A

1 (1) 0.0357 0.0371 0.0347 0
(2) 0.0340 0.0316 0.0314 0

2 (1) 0.0340 0.0371 0.0336 0
(2) 0.0314 0.0293 0.0291 0

3 (1) 0.0324 0.0377 0.0330 0
(2) 0.0286 0.0269 0.0265 0

4 (1) 0.0305 0.0377 0.0323 0
(2) 0.0254 0.0238 0.0236 0
rx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX10

i¼1
ðx̂i;II � xi;IIÞ2

.
10

r
ð42aÞ

ry ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX10

i¼1
ðŷi;II � yi;IIÞ2

.
10

r
ð42bÞ

rz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX10

i¼1
ðẑi;II � zi;IIÞ2

.
10

r
ð42cÞ

Therefore, the positional RMSE is obtained as:

rp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
x þ r2

y þ r2
z

q
ð42dÞ

The experiment is carried out in four cases. In Case 1,
the correlation coefficients between the coordinate compo-
nents of common and check points are all set as 0.35. In
Cases 2–4, we increase them to 0.45, 0.55, and 0.65 respec-
tively while maintaining other conditions unchanged (The
precision for each coordinate component is the same as
that in Case 1).

The statistics on the calculation results of these four
cases, including the mean and maximum values of the rx,
ry , rz, and rp are derived and tabulated in Table 1. In addi-
tion, Figs. 1–4 present the experiment sequences for Cases
1–4, respectively.

According to the results in Table 1 and Figs. 1–4, we
find the followings:

(i) The corresponding mean values of the rx, ry, rz, and
rp from Scheme (2) are 95.2%, 85.4%, 90.6%, and
90.1% of those from Scheme (1) in Case 1, 92.5%,
78.9%, 86.6%, and 85.5% of those from Scheme (1)
in Case 2, 88.5%, 71.3%, 80.4%, and 79.2% of those
from Scheme (1) in Case 3, and 83.5%, 63.2%,
73.3%, and 72.1% of those from Scheme (1) in Case
4, respectively.

(ii) Moreover, there exist some big RMSEs from
Scheme (1) during the simulation, and the maximal
RMSEs of all directions and positions from
Scheme (2) are obviously smaller than those from
Scheme (1) in all cases (Cases 1–4).

(iii) Additionally, we also count the number of times
when each RMSE obtained by Scheme (2) is smaller
than that obtained by Scheme (1). The results for x
ve (rp) Max (rx) Max (ry) Max (rz) Max (rp)

.0634 0.0843 0.1093 0.0882 0.1439

.0571 0.0744 0.0705 0.0653 0.0960

.0618 0.0914 0.1113 0.0948 0.1431

.0529 0.0656 0.0649 0.0656 0.0934

.0610 0.0848 0.1312 0.1174 0.1912

.0483 0.0596 0.0704 0.0570 0.0833

.0596 0.0930 0.1576 0.1171 0.2071

.0430 0.0583 0.0555 0.0523 0.0764
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direction, y direction, z direction, and position are
6160, 6912, 6584, and 7327 times in Case 1, 6522,
7269, 6878, and 7746 times in Case 2, 6736, 7531,
7213, and 8044 times in Case 3, and 7099, 7911,
7539, and 8427 times in Case 4, respectively. There
is no doubt that Scheme (2) has more probabilities
to derive better transformation results.

In general, Scheme (2) shows improvement in statistical
accuracy of the transformed coordinates than Scheme (1)
to some extent. This improvement is more remarkable
especially when there is stronger stochastic correlation
between the coordinates of the common and check points
in coordinate system I.

In this example, WTLS algorithm with universal con-
straints [Scheme (1)] ignores the statistical correlation
between the common and check points in coordinate sys-
tem I. However, GTLSP algorithm [Scheme (2)] takes this
correlation into account, and the coordinates of the new
points in system I will be corrected when implementing
the coordinate transformation. Thus it is more reasonable
in theory. Additionally, from Eq. (41c) we know that once
the correlation becomes stronger, these coordinates of
check points will be corrected more adequately. The supe-
riority of Scheme (2) to Scheme (1) is exactly attributed to
these reasons.

6. Conclusions

In this study, we proposed a GTLSP algorithm for the
universal 3D similarity transformation which combines
the parameter calculation and new point transformation
rigorously. The theoretical and experimental conclusions
are summarized as followings:

(1) GTLSP algorithm can take the random errors of new
points and the statistical correlation between com-
mon and new points in the original coordinate system
into account, therefore it is more rigorous than other
TLS algorithms for the 3D similarity transformation
in theory.

(2) The experiment shows that after the original coordi-
nates of the check points be corrected through
GTLSP algorithm, the statistical accuracy of the
transformed coordinates can be improved to some
extent compared with that obtained by WTLS algo-
rithm with universal constraints. The extent of
improvement depends on the stochastic correlation
between the common and the check points in the
original coordinate system. The stronger the correla-
tion is, the greater improvement the GTLSP algo-
rithm will make.

(3) GTLSP algorithm is derived in the form of abstract
functions, thus it can be applied to solve many other
problems as well, such as the 2D datum transforma-
tion, the GNSS height fitting, the LiDAR point reg-
istration and the image processing.

(4) The algorithm proposed in this paper is based on the
assumption that the errors of coordinates observed in
two systems have the same variance component.
However they may not be exactly same in practice.
In further work, the variance component estimation
(VCE) method for GTLSP algorithm will be investi-
gated to solve this problem.
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